
cats Typeclass Cheat Sheet
Adam Rosien (adam@rosien.net)

October 14, 2017

Installation

In your build.sbt file:

libraryDependencies += "org.typelevel" %% "cats-core" %

"1.0.0-MF"

Then in your .scala files:

import cats._

Defining Signatures

Each typeclass is defined by a particular function signature and a set
of laws1(invariants) that the typeclass must obey. 1 Typeclass laws are not listed here. See

each typeclass’ scaladoc link for more
information.

Typeclass Signature

Functor F[A] => (A => B) => F[B]

Contravariant F[A] => (B => A) => F[B]

Apply2 F[A] => F[A => B] => F[B]

FlatMap3 F[A] => (A => F[B]) => F[B]

CoFlatMap F[A] => (F[A] => B) => F[B]

Traverse4 F[A] => (A => G[B]) => G[F[B]]

Foldable F[A] => (B, (B, A) => B) => B

SemigroupK F[A] => F[A] => F[A]

Cartesian F[A] => F[B] => F[(A, B)]
2 Apply has a (broader) subtype
Applicative. See the expanded ta-
bles below.
3 FlatMap has a (broader) subtype
Monad.
4 Traverse requires that the target
type constructor G have an implicit
Applicative instance available; that is,
an implicit Applicative[G] must be in
scope.

Informally, traversing a structure
maps each value to some effect, which
are combined into a single effect that
produces a value having the original
structure. For example, by trans-
forming every A of a List[A] into a
Future[B], the traversal would return a
Future[List[B]].

mailto:adam@rosien.net
https://typelevel.org/cats/api/cats/Functor.html
https://typelevel.org/cats/api/cats/Contravariant.html
https://typelevel.org/cats/api/cats/Apply.html
https://typelevel.org/cats/api/cats/FlatMap.html
https://typelevel.org/cats/api/cats/CoFlatMap.html
https://typelevel.org/cats/api/cats/Traverse.html
https://typelevel.org/cats/api/cats/Foldable.html
https://typelevel.org/cats/api/cats/SemigroupK.html
https://typelevel.org/cats/api/cats/Cartesian.html


cats typeclass cheat sheet 2

Derived Functions

For each typeclass, its defining function is marked in bold and each
derived function listed below it.

Typeclass Signature Function

Functor F[A]

=> (A => B) => F[B] map
=> (A => B) => F[(A, B)] fproduct
=> B => F[B] as
=> B => F[(B, A)] tupleLeft
=> B => F[(A, B)] tupleRight
=> F[Unit] void

Contravariant F[A] => (B => A) => F[B] contramap

Apply5 F[A]
=> F[A => B] => F[B] ap
=> F[B] => ((A, B) => C) => F[C] map2

Applicative F[A]

=> F[A => B] => F[B] ap
=> Boolean => F[Unit] unlessA
=> Boolean => F[Unit] whenA
=> Int => F[List[A]] replicateA

FlatMap
F[A]

=> (A => F[B]) => F[B] flatMap
=> F[B] => F[B] followedBy
=> F[B] => F[A] forEffect
=> (A => F[B]) => F[(A, B)] mproduct

F[F[A]] => => F[A] flatten

CoFlatMap F[A]
=> (F[A]=> B) => F[B] coflatMap
=> => F[A[A]] coflatten

5 Both the Apply and Applicative

typeclasses implement the ap method;
Applicative is a subtype of Apply,
with an additional pure method to lift a
value into the Applicative.
6 If B has a Monoid
7 If A has a Monoid

©2017 Adam S. Rosien (adam@rosien.net)
This work is licensed under a Creative Commons Attribution 4.0 International License.
Issues and suggestions welcome at https://github.com/arosien/cats-cheatsheets

https://typelevel.org/cats/api/cats/Functor.html
https://typelevel.org/cats/api/cats/Contravariant.html
https://typelevel.org/cats/api/cats/Apply.html
https://typelevel.org/cats/api/cats/Applicative.html
https://typelevel.org/cats/api/cats/FlatMap.html
https://typelevel.org/cats/api/cats/CoFlatMap.html
mailto:adam@rosien.net
http://creativecommons.org/licenses/by/4.0/
https://github.com/arosien/cats-cheatsheets


cats typeclass cheat sheet 3

Typeclass Signature Function

Traverse
F[A]

=> (A => G[B]) => G[F[B]] traverse
=> ((A, Int) => B) => F[B] mapWithIndex
=> => F[(A, Int)] zipWithIndex

F[G[A]] => G[F[A]] sequence

Foldable F[A]

=> B => ((B, A) => B) => B foldLeft
=> Eval[B] => ((A, Eval[B]) => Eval[B]) => Eval[B] foldRight
=> (A => B) => B foldMap6

=> A combineAll7

=> (A => Boolean) => Option[A] find
=> (A => Boolean) => Boolean exists
=> (A => Boolean) => Boolean forall
=> List[A] toList
=> Boolean isEmpty
=> Boolean nonEmpty
=> Int size

SemigroupK F[A] => F[A] => F[A] combine

Cartesian F[A] => F[B] => F[(A, B)] product

©2017 Adam S. Rosien (adam@rosien.net)
This work is licensed under a Creative Commons Attribution 4.0 International License.
Issues and suggestions welcome at https://github.com/arosien/cats-cheatsheets

https://typelevel.org/cats/api/cats/Traverse.html
https://typelevel.org/cats/api/cats/Foldable.html
https://typelevel.org/cats/api/cats/SemigroupK.html
https://typelevel.org/cats/api/cats/Cartesian.html
mailto:adam@rosien.net
http://creativecommons.org/licenses/by/4.0/
https://github.com/arosien/cats-cheatsheets

	Installation
	Defining Signatures
	Derived Functions

